Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Preparation, crystal structure, and photoluminescence of Ca₂SnO₄:Eu³⁺, Y³⁺

Hisanori Yamane*, Yusuke Kaminaga, Shunsuke Abe, Takahiro Yamada

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

ARTICLE INFO

Article history: Received 7 May 2008 Received in revised form 6 June 2008 Accepted 14 June 2008 Available online 19 June 2008

Keywords: Eu³⁺ Calcium tin oxide Photoluminescence Powder X-ray diffraction Rietveld analysis

1. Introduction

Recently, studies on alkaline-earth stanates for the phosphor host materials of rare-earth activators have been proceeding and photoluminescence (PL) properties have been reported for CaSnO₃:Eu³⁺, Pr³⁺, Tb³⁺ [1-3], SrSnO₃:Eu³⁺, Tb³⁺-Mg²⁺ [1,4], Ca₂SnO₄:Eu³⁺ [5,6], Sr₂SnO₄:Eu³⁺, Eu³⁺-Ti⁴⁺ [4,7,8], and Ba₂Sn $O_4:Eu^{3+}$ [9]. Chen et al. [5] synthesized $(Ca_{1-x}Eu_x)_2SnO_4$ solid solutions at 1100-1300 °C by solid-state reaction and showed the solution limit of Eu(x) at 0.07 by X-ray powder diffraction. They speculated that some defects introduced by the substitution of Eu³⁺ for Ca²⁺ increased the lattice parameters of the solid solutions. Yang et al. [6] prepared a sample with a composition of (Ca_{0.95}Eu_{0.05})₂SnO₄ at 1250 °C by solid-state reaction. Although the obtained sample was mostly Eu-doped Ca₂SnO₄ it contained a small amount of CaSnO₃. The lattice parameters of the Eu-doped Ca₂SnO₄ were larger than those of Ca₂SnO₄ [10], although the ionic radius of Eu^{3+} is smaller than that of Ca^{2+} [11]. They considered the increase of the lattice parameters to be due to the effect of the coordination number on the radius of the ions with unsaturated electron configuration. Both papers on Eu-doped Ca_2SnO_4 reported an intense peak by the f-f transition of Eu³⁺ at around 615-618 nm in the PL spectra and a broad peak due to the charge transfer state (CTS) in the PL excitation spectra.

In a previous study by the present authors, solid solutions of $Ca_{2-x}Y_{2x}Sn_{1-x}O_4$ (0<*x*<0.5) were prepared at 1400 °C by solid-

E-mail addresses: yamane@tagen.tohoku.ac.jp (H. Yamane), yamataka@tagen.tohoku.ac.jp (T. Yamada).

ABSTRACT

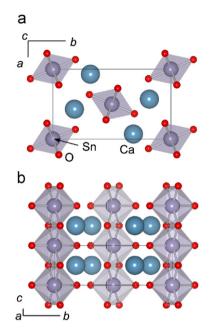
Eu³⁺-doped Ca₂SnO₄ (solid solutions of Ca_{2-x}Eu_{2x}Sn_{1-x}O₄, $0 \le x \le 0.3$) and Eu³⁺ and Y³⁺-codoped Ca₂SnO₄ (Ca_{1.8}Y_{0.2}Eu_{0.2}Sn_{0.8}O₄) were prepared by solid-state reaction at 1400 °C in air. Rietveld analysis of the X-ray powder diffraction patterns revealed that Eu³⁺ replaced Ca²⁺ and Sn⁴⁺ in Eu³⁺-doped Ca₂SnO₄, and that Eu³⁺ replaced Ca²⁺ and Y³⁺ replaced Sn⁴⁺ in Ca_{1.8}Y_{0.2}Eu_{0.2}Sn_{0.8}O₄. Red luminescence at 616 nm due to the electric dipole transition ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ was observed in the photoluminescence (PL) spectra of Ca_{2-x}Eu_{2x}Sn_{1-x}O₄ and Ca_{1.8}Y_{0.2}Eu_{0.2}Sn_{0.8}O₄ at room temperature. The maximum PL intensity in the solid solutions of Ca_{2-x}Eu_{2x}Sn_{1-x}O₄ was obtained for x = 0.1. The PL intensity of Ca_{1.8}Y_{0.2}Eu_{0.2} Sn_{0.8}O₄ was 1.26 times greater than that of Ca_{2-x}Eu_{2x}Sn_{1-x}O₄ with x = 0.1.

© 2008 Elsevier Inc. All rights reserved.

state reaction in the system of Ca–Y–Sn–O [12]. The compositions of the single-phase formation and the relationship between the compositions and lattice parameters of Ca_{2-x}Y_{2x}Sn_{1-x}O₄ indicated that equi-molar Ca²⁺ and Sn⁴⁺ ions were replaced by Y³⁺ ions. In the present study, we focused on the preparation and lattice parameters of Ca_{2-x}Eu_{2x}Sn_{1-x}O₄ solid solutions. The distribution of Eu³⁺ in the structures was investigated by the Rietveld method for X-ray powder diffraction. The luminescence properties of the solid solutions were compared with those of Eu³⁺ and Y³⁺codoped Ca₂SnO₄.

2. Experimental procedure

Y₂O₃ powder (99.99% purity; Rare Metallic) and SnO₂ powder (99.9% purity; Sigma-Aldrich) were heated at 1000 °C for 6 h before weighing. CaCO₃ powder (99.99% purity; Rare Metallic) was dried at 200 °C. The powders were weighed and mixed in an agate mortar with a pestle. The mixture was pressed into pellets, which were placed on a platinum plate and then heated at 1400 °C for 12 h in an electric furnace. After heating, the samples were cooled to room temperature in the furnace by shutting off the electric power. The obtained pellet samples were powdered in the agate mortar and characterized by powder X-ray diffraction (XRD) using CuKa radiation with a pyrolitic graphite monochromator, a scintillation counter, and a diffractometer (Rigaku RINT, 40 kV, 40 mA). Powdering, pellet forming, and heating at the same condition were repeated until the XRD pattern did not change. Generally, this process was repeated two or three times. Rietveld analysis of the powder XRD pattern measured with a step width of



^{*} Corresponding author. Fax: +81222175813.

^{0022-4596/\$ -} see front matter \circledcirc 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2008.06.033

 0.02° was carried out with the computer program RIETAN-2000 [13]. The excitation and emission spectra were recorded at room temperature on a fluorescence spectrophotometer (Hitachi

Fig. 1. The crystal structure of Ca_2SnO_4 projected on the a-b plane (a) and b-c plane (b).

Table 1

Crystallographic data and structure refinement for $Ca_{2-x}Eu_{2x}Sn_{1-x}O_4$ (x = 0.0, 0.1, 0.3) and $Ca_{1.8}Y_{0.2}Eu_{0.2}Sn_{0.8}O_4$

F-4500) equipped with a 150 W xenon lamp as the excitation source.

3. Results and discussion

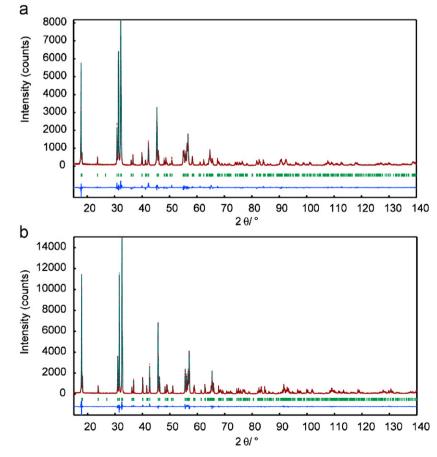
Samples of $Ca_{2-x}Eu_{2x}Sn_{1-x}O_4$ (x = 0.0, 0.001, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.4) were prepared at 1400 °C. All peaks in the XRD patterns of the samples prepared with x = 0.0-0.3 were indexed with orthorhombic cell parameters (space group *Pbam*). Peaks of CaO and Eu₂O₃ appeared in the XRD pattern of the sample prepared with x = 0.4. In the structure model of Ca₂SnO₄ analyzed by Trömel [10], the Ca atom is at the 4*h* site ($x,y,\frac{1}{2}$) and coordinated by seven oxygen atoms. The Sn atom of the 2*a* site (0,0,0) is coordinated by six oxygen atoms. There are two oxygen sites, the 4*h* site ($x,y,\frac{1}{2}$) and the 4*g* site (x,y,0), in the structure. The projections of the crystal structure on the *a*-*b* and *b*-*c* planes are illustrated in Fig. 1 by using the program VESTA [14].

Only the substitution of Eu for Ca was considered in the previous studies on Ca₂SnO₄:Eu³⁺ phosphor [5,6]. On the other hand, the substitution of Eu for Sn with a composition of Ba₂Sn_{0.925}Eu_{0.075}O₄ has been reported for Ba₂SnO₄:Eu³⁺ phosphor [9]. In the present study, we analyzed the crystal structure of Ca_{2-x}Eu_{2x}Sn_{1-x}O₄ by Rietveld analysis of X-ray powder diffraction with the model of Eu substitution for Ca and Sn in the structure of Ca₂SnO₄. Table 1 summarizes the results of structure refinement for the samples with x = 0.0, 0.1, and 0.3. Fig. 2(a) shows the observed and calculated XRD pattern of Ca_{2-x}Eu_{2x}Sn_{1-x}O₄

Formula			$Ca_2SnO_4 (x = 0.0)$	$Ca_{1.9}Eu_{0.2}Sn_{0.9}O_4 (x = 0.1)$	$Ca_{1.7}Eu_{0.6}Sn_{0.7}O_4 \ (x = 0.3)$	Ca _{1.8} Y _{0.2} Eu _{0.2} Sn _{0.8} O ₄
Unit cell dimensions Cell volume Z Goodness-of-fit R value		$a (Å) b (Å) c (Å) V (Å^3) R_{wp} (\%) R_p (\%) R_1 (\%) R_F (\%) $	5.75379(14) 9.7016(3) 3.26641(8) 182.334(8) 2 2.462 10.98 7.88 4.68 2.45	5.76322(8) 9.7997(13) 3.28937(4) 184.644(4) 2 1.413 9.25 6.75 1.66 1.05	5.78238(17) 9.7868(3) 3.33566(9) 188.767(9) 2 1.326 10.40 7.60 2.89 1.66	5.76582(7) 9.76949(11) 3.30489(4) 186.162(4) 2 1.382 9.20 6.67 1.98 1.08
Atom Site Ca/Eu	4h	g x y z B (Å ²)	1.00/0.00 0.0718(2) 0.31768(13) 0.5 0.87(3)	0.95(1)/0.05 0.06870(16) 0.31820(11) 0.5 0.276(16)	0.85(1)/0.15 0.0661(2) 0.32111(15) 0.5 0.41(3)	0.90/0.10 0.06896(15) 0.31906(10) 0.5 0.40(2)
Sn/Y/Eu	2a	g x y z B (Å ²)	1.00/0.00/0.00 0 0 0.620(14)	0.90(6)/0.00/0.10 0 0 0.276 ^a	0.70(10)/0.00/0.30 0 0 0.41 ^a	0.60/0.20/0.00 0 0 0.199(12)
01	4h	g x y Z B (Å ²)	1.0 0.2257(6) 0.0502(4) 0.5 0.47(6)	1.0 0.2312(6) 0.0491(3) 0.5 0.27(8)	1.0 0.2443(10) 0.0491(6) 0.5 0.74(13)	1.0 0.2289(6) 0.0482(4) 0.5 0.66(6)
02	4g	g x y z B (Å ²)	1.0 0.3631(6) 0.3097(4) 0 0.47 ^b	1.0 0.3613(6) 0.3061(4) 0 0.27 ^b	1.0 0.3565(9) 0.3049(6) 0 0.74 ^b	1.0 0.3601(6) 0.3063(4) 0 0.66

^a Constrained with the value of Ca/Eu.

^b Constrained with the value of O1.


Rietveld analysis for the sample of x = 0.3 resulted in $R_{wp} = 10.40\%$, $R_I = 2.89\%$, $R_F = 1.66\%$, and goodness-of-fit S = 1.326.

The refined cell parameters and cell volume of $Ca_{2-x}Eu_{2x}Sn_{1-x}O_4$ against the Eu content *x* are plotted in Fig. 3. The cell parameters of Ca_2SnO_4 (a = 5.7586(1), b = 9.7097(1), and c = 3.2692 (1)Å) agreed with those reported by Trömel (a = 5.748(1), b = 9.694(1), and c = 3.264(1)Å) [10]. The *a*- and *c*-axis lengths increased linearly in the range x = 0-0.3, where the single phases of $Ca_{2-x}Eu_{2x}Sn_{1-x}O_4$ were obtained. The *b*-axis length also monotonically increased in this range of *x*.

Table 2 summarizes the metal-oxygen interatomic distances calculated with the refined parameters for Ca2-xEu2xSn1-xO4 (x = 0.0, 0.1, 0.3). All interatomic distances between the Sn/Eu site and the oxygen sites increased with *x*. The average of the Sn/ Eu–O distances for x = 0.1 and 0.3 was, respectively, 1.5% and 4.2% larger than that of the Sn-O distances in Ca₂SnO₄, which corresponded to a 5.0% and a 13.6% increase of the volume of Sn/Eu centered oxygen octahedron ($Sn/Eu-O_6$), respectively. These relations are consistent with the relation of the effective ionic radii (Sn⁴⁺, 0.690 Å and Eu³⁺, 0.947 Å) proposed by Shannon [11]. Since the ionic radii of Ca²⁺ and Eu³⁺ in sevenfold coordination are 1.06 and 1.01 Å, respectively, it was expected that all Ca/Eu-O distances would decrease as a result of the Eu³⁺ substitution. However, some of the distances increased, probably, due to the increase of the Sn/Eu-O distances or the volume increase of the Sn/Eu–O₆ octahedron. The average of the Ca/Eu–O interatomic distances slightly increased from 2.440 Å (x = 0) to 2.449 Å (x = 0.3). As shown in Fig. 4, the cell parameters of the sample with x = 0.3 are 0.50% and 0.88% larger for the *a*- and *b*-axes and 2.12% for the c-axis. The larger increase of the c-axis length directly reflected the volume increase of the $Sn/Eu-O_6$ octahedra, which extend along the *c*-axis by sharing the edges (see Fig. 1(b)).

In the previous study reported by Yang et al. [6], a single-phase solid solution was not obtained and CaSnO₃ was included in the sample prepared with a composition of x = 0.05 for $(Ca_{1-x}Eu_x)_2SnO_4$. Our results indicated that this finding was obtained because only the substitution of Eu for Ca was considered. The Eu substitution range of x = 0.3 for $Ca_{2-x}Eu_{2x}Sn_{1-x}O_4$ was wider than $x \le 0.07$ of $(Ca_{1-x}Eu_x)_2SnO_4$ reported by Chen et al. [5]. Also, the increase of the lattice parameters observed in the previous studies was caused neither by defects nor by unsaturated electron configuration, but rather by the substitution of Eu for Sn at the octahedral site.

We prepared $Ca_{1.8}Y_{0.2}Eu_{0.2}Sn_{0.8}O_4$ containing the same amount of Eu as that in the formula of $Ca_{1,9}Eu_{0,2}Sn_{0,9}O_4$, which showed the highest intensity among the solid solutions $Ca_{2-x}Eu_{2x}Sn_{1-x}O_4$, as mentioned in the following section. The powder XRD pattern of Ca_{1.8}Y_{0.2}Eu_{0.2}Sn_{0.8}O₄ is shown in Fig. 2(b). In order to clarify the site occupancies of Eu and Y, Rietveld analysis was performed with the models shown in Table 3. In model A, only Eu^{3+} ions occupy the Ca site (4*h*) and only Y^{3+} ions occupy the Sn site (2*a*). Both Ca and Sn sites are occupied by the same amount (0.100) of Eu and Y in model C. Model E shows the occupation of the Sn site by Eu³⁺ ions and that of the Ca site by Y³⁺ ions. Agreement factors of the analyses are also summarized in Table 3. The best fit between the observed and calculated XRD patterns was obtained by model A with the lowest agreement factors, e.g., $R_{wp} = 9.20$ and S = 1.382. Table 1 shows the refined lattice parameters, atomic coordinates, and isotropic displacement parameters of Ca_{1.9}Eu_{0.2}Sn_{0.9}O₄. The ionic radius of Y³⁺ in sixfold coordination

Fig. 2. The observed (dots) and calculated (solid) X-ray diffraction profiles of Ca_{1.7}Eu_{0.6}Sn_{0.7}O₄ (a) and Ca_{1.8}Y_{0.2}Eu_{0.2}Sn_{0.8}O₄ (b). The short vertical bars show the positions of the allowed Bragg reflections. The difference profile is located at the bottom of the figures.

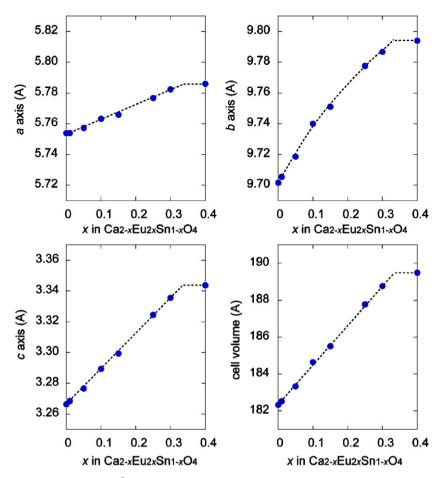


Fig. 3. Cell parameters and volume versus Eu^{3+} content x in $Ca_{2-x}Eu_{2x}Sn_{1-x}O_4$. Estimated standard deviations are within the plotted marks.

Table 2
Selected interatomic distances (Å) of $Ca_{2-x}Eu_{2x}Sn_{1-x}O_4$ ($x = 0.0, 0.1, 0.3$) and $Ca_{1.8}Y_{0.2}Eu_{0.2}Sn_{0.8}O_4$

	$Ca_2SnO_4 (x = 0.0)$	$Ca_{1.9}Eu_{0.2}Sn_{0.9}O_4 \ (x = 0.1)$	$Ca_{1.7}Eu_{0.6}Sn_{0.7}O_4 \ (x = 0.3)$	Ca _{1.8} Y _{0.2} Eu _{0.2} Sn _{0.8} O ₄
Ca/Eu—O2	$2.342(3) \times 2$	2.359(3) × 2	$2.372(4) \times 2$	2.359(2) × 2
Ca/Eu—O1	2.368(4)	2.3351(4)	2.253(6)	2.351(3)
Ca/Eu—O2	2.374(3) × 2	2.366(3) × 2	2.403(4) × 2	2.384(3) × 2
Ca/Eu—O1	2.539(4)	2.527(4)	2.486(6)	2.523(4)
Ca/Eu—O1	2.742(4)	2.783(4)	2.855(6)	2.803(4)
Average (Å)	2.440	2.442	2.449	2.452
Volume (Å ³)	20.05	20.12	20.34	20.36
Sn/Y/Eu—O2	2.008(4)×2	2.051(3) × 2	2.082(6) × 2	$2.057(4) \times 2$
Sn/Y/Eu—O1	$2.143(2) \times 4$	$2.170(2) \times 4$	$2.238(4) \times 4$	$2.166(2) \times 4$
Average (Å)	2.098	2.130	2.186	2.130
Volume (Å ³)	12.115	12.716	13.768	12.674

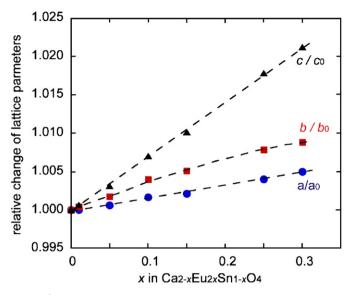

(0.90 Å) is closer to that of Sn⁴⁺ (0.690 Å) than the radius of Eu³⁺ (0.947 Å), while the ionic radii of Ca²⁺ and Eu³⁺ (1.06 and 1.01 Å, respectively) are larger than the radius of Y³⁺ in sevenfold coordination (0.96 Å). These size relations correspond to the occupation of the Ca site by Eu³⁺ ions and that of the Sn site by Y³⁺ ions in Ca_{1.8}Y_{0.2}Eu_{0.2}Sn_{0.8}O₄.

Fig. 5 shows the PL spectrum of $Ca_{1.9}Eu_{0.2}Sn_{0.9}O_4$ under 288 nm excitation. A strong emission peak due to the electric dipole transition ${}^5D_0 \rightarrow {}^7F_2$ was observed at 616 nm. The electric dipole transition is induced by the lack of inversion symmetry at the Eu³⁺ site and depends strongly on the site symmetry in a host crystal. In the structure of $Ca_{1.9}Eu_{0.2}Sn_{0.9}O_4$, Eu^{3+} ions occupy both the Ca site (4*h*) and the Sn site (2*a*). The local symmetric Ca site (*m*) is

coordinated by seven oxygen atoms. Thus, the strong emission of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition is mainly attributed to the Eu³⁺ ions which occupy the Ca site.

The PL intensity dependence of the Eu content x in $Ca_{2-x}Eu_{2x}Sn_{1-x}O_4$ is shown in Fig. 6. The intensity at 616 nm became higher with x up to 0.1 (10 mol%), which was close to the Eu content (7 mol%) of Ca_2SnO_4 :Eu³⁺ with the maximum intensity in the study by Chen et al. [5]. The decrease of the intensity at higher Eu contents could probably be explained as being due to cross-relaxation.

The PL spectrum from $Ca_{1.8}Y_{0.2}Eu_{0.2}Sn_{0.8}O_4$, in which the Eu content in the formula was same as that in the formula of $Ca_{1.9}Eu_{0.2}Sn_{0.9}O_4$, is also depicted in Fig. 5. The emission intensity of $Ca_{1.8}Y_{0.2}Eu_{0.2}Sn_{0.8}O_4$ at 616 nm was 1.26 times higher than that

Fig. 4. Eu³⁺ content dependence of the cell parameters normalized with the values at x = 0.

Table 3 Structure refinement for ${\sf Ca}_{1.8}{\sf Y}_{0.2}{\sf Eu}_{0.2}{\sf Sn}_{0.8}{\sf O}_4$ with various site occupancies

Site		Site occupancy g						
	Model	A	В	С	D	E		
4h 2a 4h 4g	Ca1 Y1 Eu1 Sn2 Y2 Eu2 O1 O2	0.900 0.000 0.100 0.800 0.200 0.000 1.000 1.000	0.900 0.025 0.075 0.800 0.150 0.050 1.000 1.000	0.900 0.050 0.800 0.100 0.100 1.000 1.000	0.900 0.075 0.025 0.800 0.050 0.150 1.000 1.000	0.900 0.100 0.000 0.800 0.000 0.200 1.000 1.000		
R _{WI} R _P R _I R _F S		9.20 6.67 1.98 1.08 1.382	9.37 6.82 1.98 1.06 1.409	9.73 7.09 2.41 1.16 1.462	10.36 7.53 3.04 1.35 1.557	11.26 8.16 4.06 1.65 1.693		

of Ca_{1.9}Eu_{0.2}Sn_{0.9}O₄. As mentioned above, the structure formula of Ca_{1.8}Y_{0.2}Eu_{0.2}Sn_{0.8}O₄ can be expressed with $(Ca_{0.9}Eu_{0.1})_2$ (Sn_{0.8}Y_{0.2})O₄, and all Eu³⁺ ions occupy the Ca site. The selective occupation of the nonsymmetric Ca site by Eu³⁺ may have caused the increase of the PL intensity. Separation of Eu³⁺ ions by the Y³⁺ ion-occupied Sn site may also have reduced Eu–Eu energy transfer.

The excitation spectra of Ca_{1.9}Eu_{0.2}Sn_{0.9}O₄ and Ca_{1.8}Y_{0.2}Eu_{0.2}Sn_{0.8}O₄ monitored at 616 nm are shown in Figs. 7(a) and (b). In addition to intra-4*f*-shell transitions for Eu³⁺ ions, a broad band attributed to the CTS due to europium–oxygen interaction was observed in the spectra. The CTS band of Ca_{1.9}Eu_{0.2}Sn_{0.9}O₄ with a peak at 296 nm was broader than that of Ca_{1.8}Y_{0.2}Eu_{0.2}Sn_{0.8}O₄ with a peak at 288 nm. This may also be related to the site selectivity of Eu³⁺ ion in Ca_{1.8}Y_{0.2}Eu_{0.2}Sn_{0.8}O₄.

4. Conclusions

The substitution of Eu^{3+} ions for both Ca^{2+} and Sn^{4+} ions in Ca_2SnO_4 was revealed by solid-state reaction synthesis and Rietveld analysis of X-ray powder diffraction. Single-phase solid

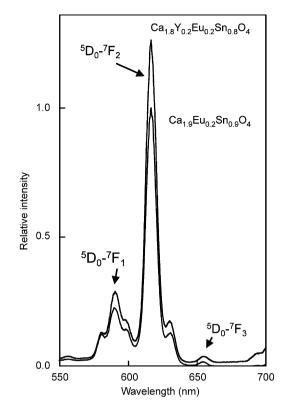
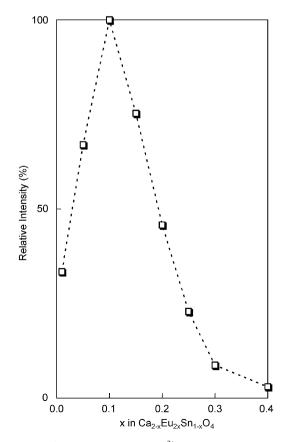



Fig. 5. Emission spectra of $Ca_{1,9}Eu_{0,2}Sn_{0,9}O_4$ excited at 296 nm and $Ca_{1,8}Y_{0,2}Eu_{0,2}S-n_{0,8}O_4$ excited at 288 nm.

Fig. 6. Variation of emission intensity with Eu^{3+} content *x* in $Ca_{2-x}Eu_{2x}Sn_{1-x}O_4$ (a) under 296 nm excitation.



Fig. 7. Excitation spectra of $Ca_{1.9}Eu_{0.2}Sn_{0.9}O_4$ (a) and $Ca_{1.8}Y_{0.2}Eu_{0.2}Sn_{0.8}O_4$ (b) monitored at 616 nm.

solutions of $Ca_{2-x}Eu_{2x}Sn_{1-x}O_4$ were prepared at $x \le 0.3$. Selective occupation of the Ca site by Eu^{3+} ions and of the Sn site by Y^{3+} ions was suggested for the sample prepared by co-doping of Ca_2SnO_4 with Eu and Y. The highest PL intensity among the solid solutions

of $Ca_{2-x}Eu_{2x}Sn_{1-x}O_4$ was observed at 616 nm for the sample with x = 0.1 under 296 nm excitation. The intensity of the emission at 616 nm from $Ca_{1.8}Y_{0.2}Eu_{0.2}Sn_{0.8}O_4$ was 1.26 times higher than that from $Ca_{1.9}Eu_{0.2}Sn_{0.9}O_4$.

Acknowledgments

This work was supported in part by a Science Research Expenses Subsidy from the Ministry of Education, Culture, Sports, Science, and Technology, Japan, Grant-in-Aid for Scientific Research (B), 17360316, 2007.

References

- [1] Z. Lu, L. Chen, Y. Tang, Y. Li, J. Alloys Compd. 387 (2005) L1-L4.
- [2] Z. Liu, Y. Liu, Mater. Chem. Phys. 93 (2005) 129-132.
- [3] B. Lei, B. Li, H. Zhang, L. Zhang, Y. Cong, W. Li, J. Electrochem. Soc. 154 (2007) H623-H630.
- [4] K. Ueda, T. Yamashita, K. Nakayashiki, K. Goto, Jpn. J. Appl. Phys. 45 (2006) 6981–6983.
- [5] Y.-C. Chen, Y.-H. Chang, B.-S. Tsai, Opt. Mater. 27 (2005) 1874–1878.
- [6] H.M. Yang, J.X. Shi, M.L. Gong, J. Sol. State. Chem. 178 (2005) 917-920.
- [7] H.M. Yang, J.X. Shi, M.L. Gong, J. Alloys Compd. 415 (2006) 213-215.
- [8] Y.-C. Chen, Y.-H. Chang, B.-S. Tsai, J. Alloys Compd. 398 (2005) 256-260.
- [9] H. Gao, Y. Wang, J. Mater. Res. 21 (2006) 1857-1861.
- [10] M. Trömel, Z. Anorg. Allg. Chem. 54 (1969) 237–247 (JCPDS (Ca₂SnO₄ #46-0112).
- [11] R.D. Shanon, Acta Crystallogr. A 32 (1976) 751-767.
- [12] Y. Kaminaga, H. Yamane, T. Yamada, J. Am. Ceram. Soc. 90 (2007) 1917.
- [13] F. Izumi, T. Ikeda, Mater. Sci. Forum 321–324 (2000) 198.
- [14] F. Izumi, K. Momma, Solid State Phenom. 130 (2007) 15-20.